MathJax on Blogger Cheatsheet
1. Placement
$\sum_{i=0}^n i^2 = \frac{(n^2+n)(2n+1)}{6}$
will generate the formula inline \(\sum_{i=0}^n i^2 = \frac{(n^2+n)(2n+1)}{6}\) of a paragraph, where
$$\sum_{i=0}^n i^2 = \frac{(n^2+n)(2n+1)}{6}$$ will render the formula as a seperate image $$\sum_{i=0}^n i^2 = \frac{(n^2+n)(2n+1)}{6}$$ and not inline to the paragraph.2. Greek letters
For Greek letters, use
$\alpha$\(\alpha\)$\beta$\(\beta\)$\delta$\(\delta\) or$\Delta$\(\Delta\)$\gamma$\(\gamma\) or$\Gamma$\(\Gamma\)$\ldots$\(\ldots\)$\omega$\(\omega\) or$\Omega$\(\Omega\)
3. Superscripts and subscripts
For superscripts and subscripts, use
^ and _.
$x_i^2$\(x_i^2\)$\log_2x$\(\log_2x\)
4. Grouping
Superscripts, subscripts, and other operations apply only to the next “group”. A “group” is either a single symbol, or any formula surrounded by curly braces {…}.
If you do
$10^10$, you will get a surprise: \(10^10\). But 10^{10} gives what you probably wanted: \(10^{1-}\).Use curly braces to delimit a formula to which a superscript or subscript applies:
$x^5^6$ is an error; ${x^y}^z$ is \({x^y}^z\), and $x^{y^z}$ is \(x^{y^z}\).Observe the difference between
$x_i^2$ \(x_i^2\) and $x_{i^2}$ \(x_{i^2}\).5. Parentheses
Ordinary symbols
$()[]$ make parentheses and brackets \((2+3)[4+4](2+3)[4+4]\).Use
$\{$ and $\}$ for curly braces \(\{\ldots\}\) and use $\($ and $\)$ for round braces \((\ldots)\).These do not scale with the formula in between, so if you write
$(\frac{\sqrt x}{y^3})$ the parentheses will be too small: \(\frac{\sqrt x}{y^3}\).Using
$\left$ and $\right$ will make the sizes adjust automatically to the formula they enclose: $\left(\frac{\sqrt x}{y^3}\right)$ is \(\left(\frac{\sqrt x}{y^3}\right)\).6. Sums and integrals
$\sum$ and $\int the subscript is the lower limit and the superscript is the upper limit, so for example $\sum_1^n$ renders as \(\sum_1^n\).Remember that
{…} if the limits are more than a single symbol. For example, $\sum_{i=0}^\infty i^2$ renders as \(\sum_{i=0}^\infty i^2\).Similarly,
$\prod$ \(\prod\), $\int$ \(\int\), $\bigcup$ \(\bigcup\), $\bigcap$ \(\bigcup\) and/or \iint \(\iint\).7. Fractions
There are two approaches
$\frac ab$applies to the next two groups renders as \(\frac ab\); and- more complicated numerators and denominators use
$/{…/}$
$\frac{a+1}{b+1}$ renders as \(\frac{a+1}{b+1}\).
If the numerator and denominator are complicated, you may prefer \over, which splits up the group that it is in, eg. ${a+1\over b+1}$ renders as \({a+1\over b+1}\).8. Radical signs
Use
$\sqrt$, which adjusts to the size of its argument, eg. $\sqrt{x^3}$ renders as \(\sqrt{x^3}\) and $\sqrt[3]{\frac xy}$ renders as \(\sqrt[3]{\frac xy}\).For complicated expressions, consider using
${...}^{1/2}$ instead.9. Special functions
Such as
$\lim$, $\sin$, $\max$, $\ln$, etc. are normally set in roman font instead of italic font. $\sin x$ renders as \(\sin x\), and not $/sin x$ renders as \(sin x\).Use subscripts to attach a notation to
$\lim$, eg. $\lim_{x\to 0}$ renders as \(\lim_{x\to 0}\).10. Some special symbols and notations
$\lt$\(\lt\) and$\not\lt$\(\not\lt\)$\gt$\(\gt\) and$\not\gt$\(\not\gt\)$\le$\(\le\) and$\not\le$\(\not\le\)$\ge$\(\ge\) and$\not\ge$\(\not\ge\)$\times$\(\times\) and$\div$\(\div\)$\pm$\(\pm\) and$\mp$\(\mp\)$\ell\(\ell\)$\cdot$\(\cdot\) and$\cup$\(\cup\) and$\cap$\(\cap\)$\setminus$\(\setminus\)$\subset$\(\subset\) and$\subseteq$\(\subseteq\) and$\subsetneq$\(\subsetneq\) and$\supset$\(\supset\)$\in$\(\in\) and$\notin$\(\notin\)$\emptyset$\(\emptyset\) and$\varnothing$\(\varnothing\)${n+1 \choose 2k}$or$${n+1 \choose 2k}$or$\binom{n+1}{2k}$\(n+1 \choose 2k\)$\to$\(\to\) or$\rightarrow$\(\rightarrow\) or$\leftarrow$\(\leftarrow\) or$\Rightarrow$\(\Rightarrow\) or$\Leftarrow$\(\Leftarrow\) or$\mapsto$\(\mapsto\)$\land$\(\land\) or$\lor$\(\lor\) or$\lnot$\(\lnot\) or$\forall$\(\forall\) or$\exists$\(\exists\) or$\top$\(\top\) or$\bot$\(\bot\) or$\vdash$\(\vdash\) or$\vDash$\(\vDash\)$\star$\(\star\) or$\ast$\(\ast\) or$\oplus$\(\oplus\) or$\circ$\(\circ\) or$\bullet$\(\bullet\)$\approx$\(\approx\) or$\sim$\(\sim\) or$\simeq$\(\simeq\) or$\cong$\(\cong\) or$\equiv$\(equiv\) or$\prec$\(\prec\) or$\lhd$\(\lhd\)$\infty$\(\infty\) and$\aleph_0$\(\aleph_0\) or$\nabla$\(\nabla\) and$\partial$\(\partial\) or$\Im$\(\Im\) or$\Re$\(\Re\)$\pmod$for modular equivalence eg.$a\equiv b\pmod n$$would render as \(a\equiv b\pmod n\)$\ldotsis the dots in$a1,a2,\ldots,an$renders as \(a1,a2,\ldots,an\) and$\cdots$is the dots in$a1+a2+⋯+ana1+a2+⋯+an$renders as \(a1+a2+\cdots+ana1+a2+\cdots+an\)$\epsilon$renders as \(\epsilon\) and$\varepsilon$renders as \(\varepsilon\)$\phi$renders as \(\phi\) and$\varphi$renders as \(\varphi\)
11. Spaces
$a_b$ and $a____b$ are both \(ab\).
$\,$renders as \(a\,b\)$\;$renders as \(a\;b\)$\quad$renders as \(a \quad b\)$\qquad$renders as \(a \qquad b\)
$sum_(i=1)^n i^3=((n(n+1))/2)^2$
renders as
\(sum_(i=1)^n i^3=((n(n+1))/2)^2\)$\begin{align}
\sqrt{37}
& = \sqrt{\frac{73^2-1}{12^2}} \\
& = \sqrt{\frac{73^2}{12^2}\cdot\frac{73^2-1}{73^2}} \\
& = \sqrt{\frac{73^2}{12^2}}\sqrt{\frac{73^2-1}{73^2}} \\
& = \frac{73}{12}\sqrt{1 - \frac{1}{73^2}} \\
& \approx \frac{73}{12}\left(1 - \frac{1}{2\cdot73^2}\right)
\end{align}$
renders as
\(\begin{align} \sqrt{37} & = \sqrt{\frac{73^2-1}{12^2}} \\ & = \sqrt{\frac{73^2}{12^2}\cdot\frac{73^2-1}{73^2}} \\ & = \sqrt{\frac{73^2}{12^2}}\sqrt{\frac{73^2-1}{73^2}} \\ & = \frac{73}{12}\sqrt{1 - \frac{1}{73^2}} \\ & \approx \frac{73}{12}\left(1 - \frac{1}{2\cdot73^2}\right) \end{align} \)$P(Z\le z) = \Phi(z) = \int_{-\infty}^z \frac{1}{\sqrt{2\pi}} e^{-w^2/2}\,dw$renders as \(P(Z\le z) = \Phi(z) = \int_{-\infty}^z \frac{1}{\sqrt{2\pi}} e^{-w^2/2}\,dw\)$\begin{align} \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\ \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\ \nabla \cdot \vec{\mathbf{B}} & = 0 \end{align}$renders as \(\begin{align} \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\ \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\ \nabla \cdot \vec{\mathbf{B}} & = 0 \end{align}\)
- MathJAX - https://www.mathjax.org
- Calculatorium.com - http://www.calculatorium.com/mathjax-quick-start-tutorial/


